skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ng, Lucien KL"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Garbled Circuit (GC) is a basic technique for practical secure computation. GC handles Boolean circuits; it consumes significant network bandwidth to transmit encoded gate truth tables, each of which scales with the computational security parameter κ. GC optimizations that reduce bandwidth consumption are valuable. It is natural to consider a generalization of Boolean two-input one-output gates (represented by 4-row one-column lookup tables, LUTs) to arbitrary N-row m-column LUTs. Known techniques for this do not scale, with na¨ıve size-O(Nmκ) garbled LUT being the most practical approach in many scenarios. Our novel garbling scheme – logrow – implements GC LUTs while sending only a logarithmic in N number of ciphertexts! Specifically, let n = ⌈log2 N⌉. We allow the GC parties to evaluate a LUT for (n−1)κ+nmκ+Nm bits of communication. logrow is compatible with modern GC advances, e.g. half gates and free XOR. Our work improves state-of-the-art GC handling of several interesting applications, such as privacypreserving machine learning, floating-point arithmetic, and DFA evaluation. 
    more » « less